A Uniform Approach to Analogies, Synonyms, Antonyms, and Associations
نویسنده
چکیده
Recognizing analogies, synonyms, antonyms, and associations appear to be four distinct tasks, requiring distinct NLP algorithms. In the past, the four tasks have been treated independently, using a wide variety of algorithms. These four semantic classes, however, are a tiny sample of the full range of semantic phenomena, and we cannot afford to create ad hoc algorithms for each semantic phenomenon; we need to seek a unified approach. We propose to subsume a broad range of phenomena under analogies. To limit the scope of this paper, we restrict our attention to the subsumption of synonyms, antonyms, and associations. We introduce a supervised corpus-based machine learning algorithm for classifying analogous word pairs, and we show that it can solve multiple-choice SAT analogy questions, TOEFL synonym questions, ESL synonym-antonym questions, and similar-associated-both questions from cognitive psychology.
منابع مشابه
Word Embedding-based Antonym Detection using Thesauri and Distributional Information
This paper proposes a novel approach to train word embeddings to capture antonyms. Word embeddings have shown to capture synonyms and analogies. Such word embeddings, however, cannot capture antonyms since they depend on the distributional hypothesis. Our approach utilizes supervised synonym and antonym information from thesauri, as well as distributional information from large-scale unlabelled...
متن کاملComparing Distributional and Mirror Translation Similarities for Extracting Synonyms
Automated thesaurus construction by collecting relations between lexical items (synonyms, antonyms, etc) has a long tradition in natural language processing. This has been done by exploiting dictionary structures or distributional context regularities (coocurrence, syntactic associations, or translation equivalents), in order to define measures of lexical similarity or relatedness. Dyvik had pr...
متن کاملOn the use of antonyms and synonyms from a domain perspective
This corpus study addresses the question of the nature and the structure of antonymy and synonymy in language use, following automatic methods to identify their behavioral patterns in texts. We examine the conceptual closeness/distance of synonyms and antonyms through the lens of their DOMAIN instantiations.
متن کاملA Multitask Objective to Inject Lexical Contrast into Distributional Semantics
Distributional semantic models have trouble distinguishing strongly contrasting words (such as antonyms) from highly compatible ones (such as synonyms), because both kinds tend to occur in similar contexts in corpora. We introduce the multitask Lexical Contrast Model (mLCM), an extension of the effective Skip-gram method that optimizes semantic vectors on the joint tasks of predicting corpus co...
متن کاملPolarity Inducing Latent Semantic Analysis
Existing vector space models typically map synonyms and antonyms to similar word vectors, and thus fail to represent antonymy. We introduce a new vector space representation where antonyms lie on opposite sides of a sphere: in the word vector space, synonyms have cosine similarities close to one, while antonyms are close to minus one. We derive this representation with the aid of a thesaurus an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008